
U.S. Government work not protected by U.S. copyright

Testing a Neural Network Accelerator on a High-
Altitude Balloon

Gilbert Clark
LCN Branch

NASA Glenn Research Center
Cleveland, OH, USA

gilbert.j.clark@nasa.gov

Geoffrey Landis
LEX Branch

NASA Glenn Research Center
Cleveland, OH, USA

geoffrey.landis@nasa.gov

Ethan Barnes
Intern

NASA Glenn Research Center
Cleveland, OH, USA

ethancbarnes@gmail.com

Blake LaFuente

Intern
NASA Glenn Research Center

Cleveland, OH, USA
blakelafuente@gmail.com

Kristina Collins
Intern

NASA Glenn Research Center
Cleveland, OH, USA

kristina.collins@case.edu

Abstract— The cognitive communications project has been
working to refine artificial intelligence and machine learning
approaches to support their deployment and sustained use in
space environments. It has historically been difficult to
implement such techniques on space platforms, however, due to
the computational requirements they levy onto general-purpose
avionics hardware. While technologies exist to accelerate the
computation of aspects of neural networks, such platforms have
not historically been deployed in space environments. Given
that testing payloads in such environments can be both cost- and
time-prohibitive, high-altitude balloons can be used as a way to
approximate a space environment at a much lower cost, thus
providing a cost-effective way in which to test newer approaches
to hardware acceleration for artificial intelligence which may be
deployed onto spacecraft more directly.

This paper describes a successful test of a commercial off-
the-shelf neural network accelerator on a high-altitude balloon.
It begins by explaining our selection criteria when evaluating
different commercial neural network acceleration techniques:
primary considerations include size, weight, and power (SWaP)
as well as ease of integration. Next, the paper describes the
development and implementation of an experimental flight test
platform: flight and ground components are discussed.
Afterward, the paper discusses the experimental payload itself:
this includes the experimental procedure as well as the specific
image and method used for testing. Finally, the paper concludes
with an evaluation of both the experimental device tested at
altitude as well as the flight test framework itself, identifying
how the existing platform can be used to continue testing
commercial off-the-shelf (COTS) solutions for acceleration.

Keywords—artificial intelligence, embedded systems, system
verification

I. INTRODUCTION
One commonly cited source of the “Internet of Things”

(IoT) states that it began as the title of a presentation that was
intended to link radio-frequency identification technology
with the internet at large [1]. Since then, the phrase has
evolved into a larger phrase that describes the connectivity
between an ever-growing number of distributed sensors,
instruments, and embedded devices. While each individual
device tends to be low-power, there are a number of
approaches that allow such devices to capitalize on more
powerful aspects of the networks they are connected to.

Data offload to the cloud offers one approach to
augmenting the capabilities available to power- and compute-
constrained IoT devices: there has been a substantial amount
of work in developing cellular (and other) approaches to
communications that have been tuned for IoT applications.
These approaches focus on allowing sensors to offload their
data to specialized services running, for example, on the
Amazon Web Services, Microsoft Azure, or other internet-
based platforms. Such platforms often provide aggregation
and analysis services, which are then capable of applying
increased amounts of compute power in a datacenter toward
analyzing, repackaging, and presenting data to users. The
only requirement this levies onto the IoT device is an
expectation of connectivity: that it will be able to offload its
data for this processing to take place. This approach shares a
number of common characteristics with the way science data
is processed by spacecraft today.

A. Space Assets as IoT Devices
Space assets often act as extremely expensive wrappers for

an (also expensive) instrument. Fundamentally, the intent of
the architectural approach to space research is similar to the
architecture often observed in common IoT applications: find
a way for the data gathered by an instrument on a device to
reach the people (e.g. scientists and engineers) who are
interested in reviewing it. Spacecraft, like most IoT devices,
tend to be constrained in terms of their size, weight, and
power: when designing a space mission to last for years, every
milliwatt counts. While it may be easier to replace a node
taking measurements in a forest than it is to replace a node
taking measurements in space, in neither case does one want
to venture out to replace a battery more often than is absolutely
necessary.

Figure 1 - Sensor Networks in Space vs. Sensor Networks on Earth

https://ntrs.nasa.gov/search.jsp?R=20190033096 2020-05-09T12:38:53+00:00Z

Generally, this means that compute and RF capabilities are
planned extremely carefully for flight systems. In most
instances, the model adopted by the mission resembles that of
the model adopted by modern IoT cloud applications: virtually
no processing happens on the spacecraft, and the supporting
systems on the spacecraft are simply intermediary systems to
support buffering data and returning it to the ground. This
approach is a straightforward one, but does present some
difficulties not commonly associated with IoT devices.

B. Constraints on Spacecraft Communications
Traditional space networks operate more like circuit-

switched phone systems than like packet-switched terrestrial
networks. There are a number of reasons for this, but many of
them trace back to the physical mechanics involved with
closing and maintaining an RF link. Satellites in non-
geostationary orbits move into and out of range of ground
stations relatively quickly, leading to dynamic link
characteristics that can vary wildly between successive passes.
Further, ground stations are normally tuned to optimize for
maximal gain, leading to highly directional RF systems that
can speak with a relatively limited number of assets in parallel.
Additionally, such high-gain equipment is relatively
expensive to operate and maintain: even if the capital expense
of building a new ground station can be supported at a given
moment in time, the operational expenses represent a long-
term infrastructure commitment. Thus, communication with
the ground can often require a nontrivial degree of human
intervention to complete and maintain.

Figure 2 – Intermittent Contact with Networked Ground Stations

The orbital mechanics can be simplified (to an extent)
through the use of assets such as geosynchronous relay
satellites. Unfortunately, while geosynchronous relay
spacecraft can be an option for larger missions, they are
generally a challenge for smaller missions to effectively
utilize. A satellite in geosynchronous orbit is over 22,000
miles above mean sea level, whereas satellites in low-Earth
orbit are generally less than 1,250 miles above the surface: as
such, it requires substantially more power to close a link with
a relay satellite than it does to close an equivalent link directly
with a station on the ground. Addressing the power and
thermal considerations necessary to facilitate the use of a

geosynchronous relay at a nontrivial bit rate normally
promotes a spacecraft out of the “small” category.

C. Toward Computing at the Edge … of Space
While there are relatively hard physical limitations on RF

links between spacecraft, limitations on compute aspects of
modern spacecraft design are somewhat more fluid.
Innovations in architecture and manufacturing process allow
modern CPUs to iteratively improve on processing
capabilities without affecting the resulting size or weight of
the processing package. Further, various advances in
hardware acceleration for specific algorithms and approaches
(e.g. neuromorphic processors) can offer savings when
compared to general-purpose CPUs that would otherwise be
necessary to accomplish an equivalent task [4, 13].

These improvements have led to a marked interest in the
idea of running nontrivial compute tasks directly on spacecraft
before data passes through the link. This interest mirrors, for
example, the interest in “edge computing” (or, more recently,
“fog computing”) on terrestrial IoT systems [2]. More
efficient and powerful CPUs have facilitated more powerful
processing capabilities on individual IoT systems. By running
such processing tasks before the data leaves a system (be it
space or terrestrial), one can significantly reduce the data
requirements for a system while simultaneously improving
e.g. the speed at which a system can analyze and react to a
dynamic environment.

D. Technology Readiness and the High Altitude Balloon
While the idea of edge computing sounds attractive in

theory, mission designers tend to be extremely hesitant to
adopt unnecessary risk in systems which are not required for
a successful mission. This leads to something of a proverbial
chicken-and-egg problem with implementing new
technologies in missions: a technology cannot be proven if it
does not fly, but no one wants to assume the risk inherent to
flying an unproven technology. While missions are
commissioned entirely to demonstrate unproven
communication technologies, such missions are themselves
somewhat rare and carefully structured in terms of their
lifetime and the types of experiments they can support.
Further, in order to be considered for such a mission, a
technology must reach an acceptable level of development.
To better characterize the stage of development for a specific
technology, NASA adopts what it refers to as a technology
readiness level (TRL). The TRL scale generally ranges from
1 to 9, with 1 being a largely abstract idea, 5 being something
that has been prototyped on a breadboard / emulated
environment, and 9 being something that is battle-tested and
has flight heritage [14]. There are requirements for a
technology to progress through the various stages of
development, one of which involves applied demonstrations
in flight-like situations.

A high-altitude balloon (HAB) experiment presents one
way to take a technology at a lower TRL and demonstrate that
it can operate in space-like conditions for a specific period of
time. HAB missions are especially attractive in many cases
because they are cost-effective and simple: one can combine
a parachute, a small foam container, and a weather balloon,
and find themselves with a functional way to validate
successful operation of an experimental payload at altitudes of
25 - 30 km above sea level, an altitude at which it will be
above 99% of the Earth’s atmosphere, for a cost of $1,000
USD or less. While the conditions found at 25 – 30 km are

not identical to those commonly found in low-earth orbit,
many challenges are similar: at such high altitudes, for
example, convection cooling is less effective. The ambient air
temperature is also low enough that devices can begin to
operate incorrectly, and various aspects of design (e.g. battery
capacity [6]) need to be adjusted to suit the environment.

II. EXPERIMENTAL DESIGN

A. Experiment Overview
For reasons described above, we elected to use a HAB to

demonstrate the operation of a commercial off-the-shelf
(COTS) neural network accelerator in space-like conditions.
The intent of this experiment was to elevate the TRL of the
concept of on-board processing in the abstract. Since this was
an early experiment in this area, and the experiment was
intended to be largely student-led, we elected to focus on three
high-level objectives for our experiment: simplicity, low size,
weight, and power (SWaP), and hardware neural network
support. We also were incidentally constrained by cost and
availability of parts.

Simplicity was a must because there were only 10 weeks
in which to construct, test, validate, fly, and retrieve an
experimental payload. No mechanical components of the
balloon were specifically constructed for flight: the payload
was contained in a simple polystyrene box. Generally,
components were over-provisioned and relied on Arduino-
compatible libraries to ease the software development process.
The neural network accelerator was similarly envisioned as
something that would be straightforward for students to work
with.

Minimal SWaP was an objective for many reasons, each
of them important to the success of the intended flight. First,
minimal SWaP was desired because flight assets are
necessarily limited in the amount of size, weight, and power
available to them. With this in mind, the lower the cost of the
computational and communication elements, the more space
might be available for science on the asset. Secondly, to ease
the validation process, the payload was constructed to be
sufficiently lightweight that it would not fall within the
applicability parameters of 14 C.F.R. §101.1. Specifically,
these regulations placed a hard limit of four pounds (1.8 kg)
on the project.

Hardware neural network acceleration support was a
requirement because it was a core aspect of our envisioned
edge compute platform. While neural networks have been
implemented on small microcontrollers in the past [3], such
platforms place severe constraints on the format, size, and
function of such networks. Newer hardware acceleration
platforms, on the other hand, allow massive neural networks
to operate in the same SWaP envelope as that of a
microcontroller: IBM’s TrueNorth platform offers 1 million
neurons and 256 million synapses at 65 mW of power
consumption [4]. Field Programmable Gate Arrays (FPGAs)
are another alternative for acceleration of specific types of
neural network compute workloads: while their performance
per watt does not tend to reach the same levels of that found
within dedicated ASICs [5], they do still represent an
improvement over that of implementations based entirely
within general-purpose CPUs.

Finally, our experiment had a budget of approximately
$300 USD for parts and expenses. This amount included only
parts that we intended to purchase for the experiment: many

elements were recycled from similar applied projects and low-
cost experiments that had been run in the past. Thus, when
considering purchases, we first considered whether the parts
we had available already would be adequate to perform the
intended task.

With those objectives in mind, we proceeded to the design
phase of the project. After some consideration, the design was
split into two major subsystems: an infrastructure subsystem
and an experiment subsystem. The infrastructure piece
supported e.g. power distribution and real-time
communication with the ground, while the experiment piece
consisted of a neural network accelerator (as well as any
supporting hardware / software that might accompany it).
While not covered here in depth, the infrastructure element
also had a requirement to interface with a secondary payload
that also resided upon the same physical balloon.

B. Communications Infrastructure
The infrastructure of the balloon included four distinct

parts: the power system, a microcontroller, a radio, and
various flight-related recording instruments. Each of these
elements will be covered separately in the following sections.
Note that a graphical overview of the balloon’s wiring and
systems may be observed in Figure 3 (below).

Figure 3 - Infrastructure Overview

1) Microcontroller
When identifying a microcontroller, there was a desire to

obtain a chip that included support for a wide variety of low-
speed serial inputs and outputs. The chip was also intended to
be simple to program and work with, lightweight, and power
efficient, while simultaneously offering sufficient resources
that relatively little time would need to be spent on e.g.
ensuring code could fit into available flash and RAM on the
device. A number of development boards were evaluated for
this purpose.

The Arduino UNO was the first such device: it was
attractive due to its widespread adoption and simple
programming interface, but was ultimately unable to be used
here due to the low number of UARTs available on the part.
There was a requirement to support four simultaneous UARTs
on the balloon, but the Arduino has hardware support for only
one. We were not confident in this device’s ability to emulate
three other UARTs in software while simultaneously
interacting with other instruments over I2C and logging data
to an SD card – this may have been within the realm of
possibility, but would have required some degree of
optimization and careful implementation to realize given the
resources available.

The second and third options considered were ARM
Cortex M4 devices from STM32. These parts supported more

I/O than the Arduino and had reasonable power requirements,
but were more complex to program: rather than relying on the
well-known Arduino set of functions, the STM32
development boards exposed the function of the chips and
devices directly. This ensured they would remain an option,
but something Arduino-compatible was preferred.

One such board (and the final candidate evaluated here)
was the Teensy 3.6 development board. This board included
an ARM Cortex M4 processor (nominally clocked at 180
MHz), but offered drop-in compatibility with the Arduino
programming toolchains and approach. It included a number
of I/O capabilities, and also included software and hardware
support for SD cards directly on the board: this removed the
need to interface with an external device to obtain support for
e.g. logging instrument data to SD cards during flight. For
these reasons, the Teensy 3.6 was selected.

2) Radio System
The radio system, in this instance, was constructed from a

pair of radios that operated within the unlicensed 902 – 928
MHz band. These radios were selected primarily because they
had been used in previous experiments with some degree of
success, so the acquisition of a new system would not be
needed. With that said, the radios used for this project could
internally support transmission at up to 30 dBm, and were
reportedly able to support a 10 Kbps link down to -110 dBm.
Thus, the radio system provided a maximum link budget of
140 dB. Given that the balloon was expected to reach an
altitude of 25 – 30 km, calculations indicated that a link would
remain available through much of the flight and that there
would be a reasonable degree of margin to account for
interference and miscellaneous losses (e.g. antenna
polarization mismatch, impedance mismatch, and multi-path
losses).

Generally speaking, the radio’s high supported
transmission power meant that it was the device that drew the
most power. From the associated user manual for the device,
transmission at 30 dBm was expected to draw 710 mA at 5V
(or 3.6W). As a result, the duty cycle for the radio was
minimized to avoid issues with overheating and to maximize
the life of the battery.

3) Power System
For systems that operate at high altitudes and low

temperatures, environmental conditions can have a negative
impact on battery life and performance [6, 7]. When the
power system was designed, it was built with an objective to
support roughly 9 hours of continuous operation: this
accounted for a flight of a few hours, followed by a retrieval
process that might take longer to complete. Communication
with the balloon can be useful during the retrieval process, so
the battery was over-provisioned to support such a use-case.

In this case, the battery selected was a 5V, 10,000 mAh
lithium-ion device designed to deliver power exclusively
through a pair of USB ports. These USB ports presented a
convenient way to power most common system-on-chip
devices without necessitating direct wiring. For common
chipsets and boards (e.g. the Raspberry Pi Zero), this removed
the need to bring power to header pins directly, reducing the
chances that e.g. a mis-wired connection would damage a
component. For cases where more direct power was required,
this was accomplished by breaking one USB port out into a
5V rail and a ground rail on a power distribution board.

The power distribution board was a small breadboard that
offered a 5V rail, a ground rail, a 3.3V rail, and voltage level
translation. For simplicity’s sake, the system diagram has
been simplified to not route the level translation and 3.3V
through the distribution board: this does not sacrifice accuracy
because the 3.3V rail involved was sourced from the
microcontroller, and because the level translation was not tied
to any specific rail.

4) Instruments
Data gathering and recording was performed by

independent sensors included on the balloon. An inertial
measurement unit was used to observe the orientation and
movement of the payload during flight. These measurements
were recorded with the intent to understand the kind of
stresses that were observed during the flight. Additionally, the
IMU data was expected to offer insight with respect to how
the antenna moved during flight.

A GPS module was used to track latitude, longitude, and
altitude of the balloon. Data retrieved from this module was
included in telemetry frames and downlinked from the flight
system on a regular basis. These frames were fed into a real-
time recording and data visualization system on the ground,
which in turn allowed the balloon to be tracked in real-time
throughout its flight.

5) Software and Ground Infrastructure
The software development effort was split into two distinct

pieces: ground and flight. The flight software was written in
the C++ programming language and relied on the Arduino
library to support data communications. On flight, the intent
was for the microcontroller to manage data gathering and
manipulation, as well as push telemetry and payload data to
the radio module for downlink. The microcontroller also
responded to link characterization messages that allowed the
ground software to e.g. record message latency and to indicate
the signal strength as measured on the ground.

Figure 4 - Ground System

The core of the ground software was written in C++. The
ground software was written to record and visualize
information received from the balloon in real-time (e.g. GPS
data, signal strength, ambient temperature, ambient pressure,
etc). Data received on the ground was fed into an indexing
backend called ElasticSearch, and visualized through a web
browser: the visualization was constructed through a software
package called Kibana.

All ground software was run on a Raspberry Pi 3 system
(pictured in Figure 4 above). This system was configured to
operate as an 802.11 access point: to view data from the
balloon flight, one would first join the 802.11 network, and
then access the web interface running on that access point
directly. Relevant flight data was also displayed directly on a
small LCD. This configuration allowed multiple users to view
flight data as the experiment progressed. Communication
with the radio system was supported through a standard USB
to RS-232 adapter.

C. Experimental Payload
Once the infrastructure had been designed and largely

implemented, candidate neural network acceleration devices
were identified. Solutions evaluated included those based on
FPGAs as well as solutions based on low-cost hardware. Note
that this trade was not intended to act as an exhaustive
exploration of the space: instead, it was to select a device that
was approachable enough and simple enough that an
experiment could be designed and implemented within the
time available to students in which to work.

1) Neural Network Acceleration Approaches
Generally, approaches to accelerating neural networks fall

into a few different categories. The first category is that of
GPU-accelerated computing, which relies on the massively
parallel nature of modern graphics cards to accelerate the
computations associated with both training and executing
neural networks. GPU acceleration is an attractive general-
purpose solution, and is not limited to execution on larger
platforms: the Jetson TX2 platform, for example, supports 256
CUDA cores within a power envelope of 15W [9].

Another broad category describes FPGA-based
approaches to acceleration. There are generally multiple ways
to leverage FPGAs to accelerate such computation: one
approach is to utilize the FPGA as an OpenCL target and
develop kernels for that directly [10]. In this manner, the
FPGA acts in a manner similar to that of a GPU, where it
accelerates specific aspects of general neural network
computation. A second, more specialized approach to FPGA-
based neural network acceleration involves building neural
networks that map to the FPGA architecture more directly
[11]. This has the advantage of offering substantial
improvements to performance, but one disadvantage is that
different approaches to such acceleration often necessitate
specific interfaces. Such approaches also necessarily limit the
use of an FPGA to the specific type of problem for which an
optimized solution has been devised.

A third category involves the use of more specialized
hardware ASICs to support accelerated computation. Such
ASICs can range from specialized arrays of vector processors
that target specific applications (such as image processing)
[12] to more architecturally unique approaches that support
generalized neural network implementations [4, 13].

2) Evaluating Acceleration Options
Given the dizzying array of solutions supported, some

initial selections were made to limit the scope of the
evaluation. First, more esoteric solutions based on unique
hardware were eliminated: given that there were cost
constraints placed on the balloon and that access to such
hardware tends to be somewhat limited, it was not deemed to
be a practicable approach to acceleration. Further, such
hardware normally necessitates the acquisition of specialized
toolchains to effectively support development, requiring some

time to be invested in a specific solution before any gains
could be realized.

Next, the field of candidate devices was again reduced in
scope to focus on devices that supported the well-known
TensorFlow and PyTorch libraries. These libraries accelerate
the development and utilization of approaches to artificial
intelligence. Use of these libraries would avoid specific one-
off solutions that, while efficient, would very likely be outside
the realm of feasible implementation given the resources and
timeframe available for development. It would also allow
students to rapidly test and experiment with a number of
existing Artificial Intelligence (AI) and Machine Learning
(ML) approaches that had already been developed based on
these frameworks, which was perceived as a win.

The field was narrowed further based on an evaluation of
the backgrounds of the individuals performing the experiment.
The team involved had limited FPGA experience and, given
the compressed timeframe of the experiment, also had limited
time available to them in which to learn. As such, while
FPGAs should be evaluated more closely in the future, they
were not deemed to be a good fit for the purposes of this
particular experiment.

The Jetson TX2 was also removed from consideration.
One factor that influenced this decision was the relative power
cost: while the power utilization can run around 7.5W in
specific modes, the power utilization was still significantly
larger than that of other devices on the balloon. More
important, however, was that there was no guarantee the
balloon would be recovered. Thus, while the $599 MSRP for
this board meant that it would be replaceable, it would not a
device that would be comfortable to lose. Since the
experiment was more about demonstrating the concept than
about pushing the boundaries of embedded computation, it
was determined that another device might be better suited to
demonstrate this concept in the abstract.

Figure 5 – Flight Infrastructure / Payload Assembly

After further deliberation, candidates were down-selected
to a pair of acceleration devices that were both based on the
Movidius Myriad 2 chip. The Movidius Myriad 2

incorporates an array of 12 128-bit SIMD vector processors
(clocked at 600 MHz), onboard memory and an associated
memory fabric, hardware accelerators for specific image
transformation and processing tasks, and a lightweight RISC
processor [12]. Documentation for the Myriad 2 chipset lists
power consumption as less than 500 mW in most cases. The
device allows the user to export certain networks from
TensorFlow and Caffe and execute them directly on the chip,
removing the need for the general-purpose processor (in the
case of the Raspberry Pi Zero, the single 1 GHz BCM2835) to
perform those tasks.

One of the candidate devices was a Neural Compute Stick:
this is a USB stick that incorporates the chip, and can be
plugged into many devices for use. The other was a chip (the
MA2450) that had been integrated into an extension board
(called a “hat”) for a Raspberry Pi Zero. A complete kit
(called a Google AIY Vision Kit, consisting of a camera,
Raspberry Pi Zero, SD card, cardboard assembly, and hat) was
available for $89.99 MSRP. The kit also included a ready-
made environment (on the SD card) that came with a series of
example applications that could demonstrate use of the
MA2450 included on the hat.

Overall, the platform appeared to draw an acceptable level
of power given available battery constraints, was cheap
enough that risk associated with its loss would be small,
utilized minimal size and weight, and supported rapid design
and development of experiments that would allow students to
experiment with the chip. As such, this was the device that
was selected to be included in this experiment.

III. EXPERIMENT, FLIGHT, AND RESULTS

A. Experimental Design
Once an appropriate hardware platform had been

identified, the next question was how the platform could be
used. Upon conversation, it was determined that one useful
application of a balloon would be to validate the device’s
correct operation at altitude. The intent was to provide the
chip with a task that would be representative of an actual task
it might perform. Timing information and results associated
with the execution of this task would be recorded throughout
the flight, and those results would be evaluated upon
successful recovery of the payload.

For the purposes of identifying a representative workload,
the students identified an image classification routine. The
students next identified an image that could be classified – the
specific image analyzed will not be reproduced here to avoid
any potential issues with copyright. Once the image and
routine had been identified, students constructed a script that
would repeatedly classify the image. The time taken to
perform each individual classification was recorded, as were
the results of the classification. Classifications were repeated
as quickly as the platform would allow.

The experiment was first performed for an hour on the
ground to baseline the expected results. Results were
reviewed to ensure that they were, in fact, deterministic when
run repeatedly. Reported values were also analyzed to
determine how much time the routine was expected to take in
normal circumstances. Once this process had been completed,
the device was added to the balloon and connected to the EPS
in preparation for flight.

B. Assembly and Flight Planning
Glenn Research Center lies next to Cleveland-Hopkins

International Airport. As such, airspace at and around the
center is restricted, and not well-suited to supporting a launch.
The center’s proximity to the lake also made it very likely that,
should approval to launch be gained, the resulting landing site
would fall somewhere in Lake Erie. As such, a launch site
was selected at a location around 100 miles southwest of
Cleveland. Projections (based on weather conditions and
balloon data) indicated that the balloon would travel roughly
30 miles northeast – this put its anticipated flight path and
landing site well outside of any restricted airspace.
Projections additionally showed that the balloon would
generally remain clear of any densely populated areas.
Though not technically required, a notice to airmen
(NOTAM) was filed in support of the launch.

The final assembly included the communications
infrastructure payload, the neural network experimental
payload, a secondary experimental payload (not described in
this paper), a GPS tracking device, and a small HD camera (to
record the balloon’s flight). Integration testing between the
communications infrastructure and the secondary
experimental payload occurred throughout the course of the
development process.

The balloon assembly consisted of a high-altitude weather
balloon, a parachute, and the payload assembly itself. During
the launch, the balloon would steadily rise, and an ever-
growing difference in pressure would force the balloon to
expand outward. At a pre-determined altitude, the balloon
would finally stretch beyond its breaking point and burst. The
payload would then begin to fall, and naturally deploy an
attached parachute. The payload and parachute were not
steered: various models and tools were used to predict the
flight path, but no aspect of the flight path was actively
controlled during the flight.

Final assembly of the balloon was completed on-site at the
launch location. Validation of the assembly occurred after
both the communications and experimental payloads had been
powered on – a final systems check was completed
immediately before launch. Once systems were verified, the
balloon was released into the heavens.

C. Balloon Flight
1) Communication System Performance
Initially, communication with the balloon was maintained

through an antenna mounted to a 13-foot portable mast.
Approximately 10 minutes into the flight, we switched our
ground antenna to an omnidirectional antenna mounted to the
roof of a vehicle, and began to follow the balloon’s recorded
GPS locations and projected flight path as it moved
northward. A stable communications link was maintained
through much of the balloon’s flight, allowing for real-time
displays of metrics such as signal strength, pressure, and total
data transmitted / received through the communications
system on the balloon.

2) Flight Metrics and Altitude Modeling
One element that is critical to understanding the

characteristics of a balloon’s flight is the way its altitude
changes over time. To support altitude tracking, the balloon
included a pressure sensor. This instrument recorded the
ambient pressure (in Pascals) at a rate of one sample every ten
seconds.

Figure 6 - Balloon Altitude vs. Time

After the flight had concluded, it was necessary to take this
raw pressure data and convert it into altitude data. To assist
with this process, the National Oceanic and Atmospheric
Administration (NOAA) publishes Global Forecast System
(GFS) data on a regular basis. This data includes radiosonde
data, which maps a number of specific pressures to their
corresponding geopotential height. Note that, while
geopotential height is generally not equivalent to geometric
height, the two are treated as identical for the purposes of this
discussion.

To facilitate the conversion from pressure to altitude,
specific data points (from July 31st, 2018) were retrieved for a
nearby weather station. A model was empirically derived and
applied to this data set:

46036+ &log& *
+,,
- ∗ −14712- ∗ 31 − 𝑒56.89∗&:.,+:∗;<=&

>
?@@--A (1)

Equation 1 - Estimating altitude based on recorded pressure

Given a pressure reading in Pascals, this model could be
used to estimate the resulting height of the balloon in meters
(to an accuracy of within 100m). When this was applied to
the pressure data points recorded during the flight, it became
possible to compute the instantaneous altitude of the balloon.
From these instantaneous altitude values, additional metrics
could be calculated (such as the maximum altitude and ascent
rate of the balloon).

Based on the recorded pressure readings and the model
described above, the balloon remained in the air for a little
over two hours. It ascended at a rate of 6 meters per second
for 1.6 hours before reaching a peak altitude of 34.1 km
(112,000 feet). Once the balloon burst, the payload entered
free fall for a moment before the parachute deployed and
began to slow the payload’s descent.

The payload’s landing location was identified within a few
hours of landing, but recovering the payload took some
additional time: the sun set before the recovery team arrived
on site to retrieve the payload. As such, payload recovery was
successfully completed the following day.

After review of the data, the payload’s 5V / 10,000 mAh
battery (50 Wh) supported 15.5 hours of continuous operation.
Assuming that all battery capacity was available for the
payload to use (which is somewhat conservative), we can thus
estimate the average power utilization of the communications
and experimental neural network payload at less than or equal
to 3.23 W. The experimental configuration did not include a

means to differentiate between the power utilization of the
communications infrastructure and the experimental neural
network payload itself – this is expected to be corrected in
future revisions of the platform.

Figure 7 - Image Recorded at High Altitude

D. Experimental Results
The neural network payload performed as expected

throughout the duration of the flight. Classification results did
not change, and no errors were reported. The classification
task was completed close to 6,500 times over the course of the
15.5 hours that the payload was active. During the time the
balloon was airborne, the classification task took an average
of 8.615 seconds to execute. The execution time did not
follow any noticeable trend during the course of the flight.

There was a substantial amount of noise observed in the
general execution time. To date, an exact source of this noise
has not been determined. However, given that there is only
one processor available on the Raspberry Pi Zero, there could
be some degree of noise introduced into the results as higher
priority tasks are run in addition to the classification
experiment run here. Additionally, the Raspberry Pi Zero’s
storage medium (a microSD card) is a shared resource: if the
SD card were e.g. in use during times that image was being
read or written, this could have acted as a substantial source
of error with regard to the recorded runtime for individual
executions.

Figure 8 - Execution Time for Classification Task

IV. CONCLUSIONS AND FUTURE WORK

A. Experimental Conclusion
Based on the results observed, it is our conclusion that both

the Raspberry Pi Zero and the MA2450 worked as designed:
there were no errors logged during executions, and the
distribution of classification runtime remained consistent

throughout the course of the 15.5 hours that the experimental
payload remained powered on.

Additionally, based on experience with the
communications infrastructure during the flight, we
determined that the radio and antennas used were sufficient to
maintain a stable, bi-directional link with the payload
throughout much of its flight.

B. Future Efforts – Communications Infrastructure
Much of the engineering effort that went into the

construction of this experiment revolved less around the
neural network itself, and more about the test harness (in this
case, the supporting hardware and radio system that allowed
for communication with the payload(s) under test). However,
the communications infrastructure developed in support of
this experiment was intended to be reusable, such that it can
be used in the future to significantly reduce the non-recurring
investment required to build and fly a communications
package for a high-altitude balloon.

Further, the communications infrastructure itself offers an
avenue for pursuing experiments in the future. By exploiting
the ability of neural networks to predict new values based on
the way those networks have been trained, it should be
possible to use the neural network chip tested here to optimize
the performance of the communication system itself. This
could, for example, be realized through dynamic adjustments
to the transmission power utilized by the balloon, or through
decisions to transmit more or less frequently based on a
number of parameters. One example of such a parameter
might be the amount of data currently awaiting downlink.

C. Future Efforts – Neural Network Accelerator
Moving forward, the neural network platform itself could

be explored in more depth. While CPU-based networks could
be an option if properly optimized [8], it is expected that the
emphasis would remain on hardware acceleration approaches
to neural networks. This idea could be realized by testing
alternative platforms in similar HAB experiments (e.g. FPGA-
based approaches to AI) to validate their operation.
Alternatively, there is further opportunity to take the neural
network accelerator employed for this experiment and test it
with arbitrary networks that have been constructed in toolkits
such as PyTorch and TensorFlow. Such networks could be
applied to optimizing the communications system itself, as
indicated earlier, or could be applied toward e.g. real-time
vision processing of image and instrument data.

D. Conclusion
More generally, the authors hope that these results

demonstrate a first step toward more widespread inclusion of
AI-centric on-board processing capabilities in future space
missions. As such technology matures and finds its way into
space, the opportunities for automation and autonomy it
brings with it could not only streamline network and
spacecraft operations, but more generally serve as a means to
push the boundaries of exploration.

In order for such a vision to ever be realized, however,
experimentation and adoption of such technologies will be
key. It is our hope that this paper might offer an example of
how HAB experiments can be used as a low-cost, simple

means to demonstrate how specific technologies and concepts
can be deployed and used in space-like conditions.

ACKNOWLEDGMENT
The authors wish to express their appreciation to Brian

Willis, Steve Hall, David Chelmins, and Robert Jones for their
contributions to the construction, validation, and successful
flight of this experiment.

The authors wish to express their gratitude to Alan Hylton,
Dr. Robert Manning, Marie Piasecki, Norman Prokop, and Dr.
Daniel Raible for their contribution of time, resources, and
expertise toward the development and engineering process, as
well as their mentorship of the students involved.

The authors also wish to thank Dave Snyder for his support
of the launch and recovery process, as well as his assistance
with interpreting and modeling altitude based on the pressure
readings recorded during flight.

REFERENCES
[1] K. Ashton, “That Internet of Things thing,” RFiD J., vol. 22, no. 7, pp.

97–114, 2009.
[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its

role in the Internet of things,” in Proc. 1st Edition MCC Workshop
Mobile Cloud Comput., Helsinki, Finland, 2012, pp. 13–16..

[3] N. J. Cotton and B. M. Wilamowski, "Compensation of Nonlinearities
Using Neural Networks Implemented on Inexpensive
Microcontrollers," in IEEE Transactions on Industrial Electronics,
vol. 58, no. 3, pp. 733-740, March 2011.

[4] F. Akopyan et al., "TrueNorth: Design and Tool Flow of a 65 mW 1
Million Neuron Programmable Neurosynaptic Chip," in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 34, no. 10, pp. 1537-1557, Oct. 2015.

[5] L. Cavigelli et al. “Origami: A Convolutional Network Accelerator,”
in Proceedings of the 25th edition on Great Lakes Symposium on
VLSI (GLSVLSI '15). ACM, New York, NY, USA, 2015, 199-204.

[6] Nagasubramanian, G. “Electrical characteristics of 18650 Li-ion cells
at low temperatures,” in Journal of Applied Electrochemistry (2001)
31: 99. https://doi.org/10.1023/A:1004113825283

[7] Santoni, F., Tortora, P., Alessandrini, F. Passerini, S. “Commercial Li-
Ion Batteries for Nanosatellite Applications - a Flight Experiment.”
(2002). 502. 653.

[8] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of
neural networks on CPUs,” in Proc. Deep Learning and Unsupervised
Feature Learning NIPS Workshop, 2011 [Online]. Available:
http://research.google.com/pubs/ archive/37631.pdf

[9] T. Amert, N. Otterness, M. Yang, J. H. Anderson and F. D. Smith,
"GPU Scheduling on the NVIDIA TX2: Hidden Details
Revealed," 2017 IEEE Real-Time Systems Symposium (RTSS), Paris,
2017, pp. 104-115.

[10] J. Zhang and J. Li. “Improving the Performance of OpenCL-based
FPGA Accelerator for Convolutional Neural Network,”
in Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA '17). ACM, New York, NY,
USA, 2017, 25-34.

[11] M. Alawad and M. Lin, "Scalable FPGA Accelerator for Deep
Convolutional Neural Networks with Stochastic Streaming," in IEEE
Transactions on Multi-Scale Computing Systems, vol. 4, no. 4, pp. 888-
899, 1 Oct.-Dec. 2018.

[12] D. Moloney, B. Barry, R. Richmond, F. Connor, C. Brick and D.
Donohoe, "Myriad 2: Eye of the computational vision storm," 2014
IEEE Hot Chips 26 Symposium (HCS), Cupertino, CA, 2014, pp. 1-18.

[13] M. Davies et al., "Loihi: A Neuromorphic Manycore Processor with
On-Chip Learning," in IEEE Micro, vol. 38, no. 1, pp. 82-99,
January/February 2018.

[14] J. C. Mankins, "Technology Readiness Assessments: A
Retrospective", Acta Astronautica, 65, No. 9-10, pp. 1216–1223, 2009.

